Muscle coordination retraining inspired by musculoskeletal simulations reduces knee contact force

  • Ralston, H. J. Energy-speed relation and optimal speed during level walking. Int. Z. Angew. Physiol. Einschl. Arbeitsphysiologie 17, 277–283 (1958).

    CAS 

    Google Scholar
     

  • Donelan, J. M., Kram, R. & Kuo, A. D. Mechanical and metabolic determinants of the preferred step width in human walking. Proc. R. Soc. Lond. Ser. B Biol. Sci. 268, 1985–1992 (2001).

    CAS 
    Article 

    Google Scholar
     

  • Donelan, J. M., Shipman, D. W., Kram, R. & Kuo, A. D. Mechanical and metabolic requirements for active lateral stabilization in human walking. J. Biomech. 37, 827–835 (2004).

    PubMed 
    Article 

    Google Scholar
     

  • Selinger, J. C., O’Connor, S. M., Wong, J. D. & Donelan, J. M. Humans can continuously optimize energetic cost during walking. Curr. Biol. 25, 2452–2456 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nie, Y. et al. The relationship between knee adduction moment and knee osteoarthritis symptoms according to static alignment and pelvic drop. Biomed Res. Int. https://doi.org/10.1155/2019/7603249 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Felson, D. T. Obesity and vocational and avocational overload of the joint as risk factors for osteoarthritis. J. Rheumatol. Suppl. 31, 2–5 (2004).


    Google Scholar
     

  • Andriacchi, T. P. et al. A framework for the in vivo pathomechanics of osteoarthritis at the knee. Ann Biomed Eng. 32, 447–457 (2004).

    PubMed 
    Article 

    Google Scholar
     

  • Miyazaki, T. et al. Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Ann. Rheum. Dis. 61, 617–622 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brisson, N. M., Gatti, A. A., Damm, P., Duda, G. N. & Maly, M. R. Association of machine learning-based predictions of medial knee contact force with cartilage loss over 2.5 years in knee osteoarthritis. Arthritis Rheumatol. 73, 1638–1645 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Winby, C. R., Lloyd, D. G., Besier, T. F. & Kirk, T. B. Muscle and external load contribution to knee joint contact loads during normal gait. J. Biomech. 42, 2294–2300 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Saxby, D. J. et al. Tibiofemoral contact forces during walking, running and sidestepping. Gait Posture 49, 78–85 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Miller, R. H., Brandon, S. C. E. & Deluzio, K. J. Predicting sagittal plane biomechanics that minimize the axial knee joint contact force during walking. J. Biomech. Eng. 135, 1–11 (2013).

    Article 

    Google Scholar
     

  • Fregly, B. J. et al. Grand challenge competition to predict in vivo knee loads. J. Orthop. Res. 30, 503–513 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • Prodromos, C. C., Andriacchi, T. P. & Galante, J. O. A relationship between gait and clinical changes following high tibial osteotomy. J. Bone Jt. Surg. Ser. A 67, 1188–1194 (1985).

    CAS 
    Article 

    Google Scholar
     

  • Brandon, S. C. E. et al. Contributions of muscles and external forces to medial knee load reduction due to osteoarthritis braces. Knee 26, 564–577 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Zhao, D. et al. Correlation between the knee adduction torque and medial contact force for a variety of gait patterns. J. Orthop. Res. 25, 789–797 (2007).

    PubMed 
    Article 

    Google Scholar
     

  • Mündermann, A., Asay, J. L., Mündermann, L. & Andriacchi, T. P. Implications of increased medio-lateral trunk sway for ambulatory mechanics. J. Biomech. 41, 165–170 (2008).

    PubMed 
    Article 

    Google Scholar
     

  • Shull, P. B. et al. Six-week gait retraining program reduces knee adduction moment, reduces pain, and improves function for individuals with medial compartment knee osteoarthritis. J. Orthop. Res. 31, 1020–1025 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • Walter, J. P., D’Lima, D. D., Colwell, C. W. & Fregly, B. J. Decreased knee adduction moment does not guarantee decreased medial contact force during gait. J. Orthop. Res. 28, 1348–1354 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hortobágyi, T. et al. Altered hamstring-quadriceps muscle balance in patients with knee osteoarthritis. Clin. Biomech. 20, 97–104 (2005).

    Article 

    Google Scholar
     

  • Demers, M. S., Pal, S. & Delp, S. L. Changes in tibiofemoral forces due to variations in muscle activity during walking. J. Orthop. Res. 32, 769–776 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hodges, P. W. et al. Increased duration of co-contraction of medial knee muscles is associated with greater progression of knee osteoarthritis. Man. Ther. 21, 151–158 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Hall, M., Diamond, L. E., Lenton, G. K., Pizzolato, C. & Saxby, D. J. Immediate effects of valgus knee bracing on tibiofemoral contact forces and knee muscle forces. Gait Posture 68, 55–62 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Smith, C. R., Brandon, S. C. E. & Thelen, D. G. Can altered neuromuscular coordination restore soft tissue loading patterns in anterior cruciate ligament and menisci deficient knees during walking?. J. Biomech. 82, 124–133 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • van Veen, B., Montefiori, E., Modenese, L., Mazzà, C. & Viceconti, M. Muscle recruitment strategies can reduce joint loading during level walking. J. Biomech. 97, 109368 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Sasaki, K. & Neptune, R. R. Individual muscle contributions to the axial knee joint contact force during normal walking. J. Biomech. 43, 2780–2784 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Colborne, G. R., Wright, F. V. & Naumann, S. Feedback of triceps surae EMG in gait of children with cerebral palsy: A controlled study. Arch. Phys. Med. Rehabil. 75, 40–45 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bolek, J. E. A preliminary study of modification of gait in real-time using surface electromyography. Appl. Psychophysiol. Biofeedback 28, 129–138 (2003).

    PubMed 
    Article 

    Google Scholar
     

  • Basmajian, J. V. & De Luca, C. J. Muscles Alive: Their Functions Revealed by Electromyography (Williams & Wilkins, 1985).


    Google Scholar
     

  • Basmajian, J. V. Control and training of individual motor units. Science (80-). 141, 440–441 (1963).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Simard, T. G. & Ladd, H. W. Pre-orthotic training: An electromyographic study in normal adults. Am. J. Phys. Med. 48, 301–312 (1969).

    CAS 
    PubMed 

    Google Scholar
     

  • Ng, G. Y. F., Zhang, A. Q. & Li, C. K. Biofeedback exercise improved the EMG activity ratio of the medial and lateral vasti muscles in subjects with patellofemoral pain syndrome. J. Electromyogr. Kinesiol. 18, 128–133 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huang, H. Y., Lin, J. J., Guo, Y. L., Wang, W. T. J. & Chen, Y. J. EMG biofeedback effectiveness to alter muscle activity pattern and scapular kinematics in subjects with and without shoulder impingement. J. Electromyogr. Kinesiol. 23, 267–274 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • Kaufman, K. R., Au, K. N., Litchy, W. J. & Chao, E. Y. S. Physiological prediction of muscle forces-II. Application to isokinetic exercise. Neuroscience 40, 793–804 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Anderson, F. C. & Pandy, M. G. Static and dynamic optimization solutions for gait are practically equivalent. J. Biomech. 34, 153–161 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rajagopal, A. et al. Full-body musculoskeletal model for muscle-driven simulation of human gait. IEEE Trans. Biomed. Eng. 63, 2068–2079 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kepple, T. M., Siegel, K. L. & Stanhope, S. J. Relative contributions of the lower extremity joint moments to forward progression and support during gait. Gait Posture 6, 1–8 (1997).

    Article 

    Google Scholar
     

  • Steele, K. M., Seth, A., Hicks, J. L., Schwartz, M. S. & Delp, S. L. Muscle contributions to support and progression during single-limb stance in crouch gait. J. Biomech. 43, 2099–2105 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang, J. et al. Human-in-the-loop optimization of exoskeleton assistance during walking. Science 356(6344), 1280–1284 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pizzolato, C. et al. Biofeedback for gait retraining based on real-time estimation of tibiofemoral joint contact forces. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 1612–1621 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hunt, M. A., Charlton, J. M., Krowchuk, N. M., Tse, C. T. F. & Hatfield, G. L. Clinical and biomechanical changes following a 4-month toe-out gait modification program for people with medial knee osteoarthritis: A randomized controlled trial. Osteoarthr. Cartil. 26, 903–911 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Uhlrich, S. D., Silder, A., Beaupre, G. S., Shull, P. B. & Delp, S. L. Subject-specific toe-in or toe-out gait modifications reduce the larger knee adduction moment peak more than a non-personalized approach. J. Biomech. 66, 103–110 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Felson, D. T. et al. The efficacy of a lateral wedge insole for painful medial knee osteoarthritis after prescreening: A randomized clinical trial. Arthritis Rheumatol. 71, 908–915 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chehab, E. F., Favre, J., Erhart-Hledik, J. C. & Andriacchi, T. P. Baseline knee adduction and flexion moments during walking are both associated with 5 year cartilage changes in patients with medial knee osteoarthritis. Osteoarthr. Cartil. 22, 1833–1839 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Aaboe, J., Bliddal, H., Messier, S. P., Alkjaer, T. & Henriksen, M. Effects of an intensive weight loss program on knee joint loading in obese adults with knee osteoarthritis. Osteoarthr. Cartil. 19, 822–828 (2011).

    CAS 
    Article 

    Google Scholar
     

  • DeVita, P., Rider, P. & Hortobágyi, T. Reductions in knee joint forces with weight loss are attenuated by gait adaptations in class III obesity. Gait Posture 45, 25–30 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Knarr, B. A., Higginson, J. S. & Zeni, J. A. Change in knee contact force with simulated change in body weight. Comput. Methods Biomech. Biomed. Engin. 19, 320–323 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Kinney, A. L. et al. Changes in in vivo knee contact forces through gait modification. J. Orthop. Res. 31, 434–440 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • Richards, R. E., Andersen, M. S., Harlaar, J. & van den Noort, J. C. Relationship between knee joint contact forces and external knee joint moments in patients with medial knee osteoarthritis: Effects of gait modifications. Osteoarthr. Cartil. 26, 1203–1214 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Fregly, B. J., D’Lima, D. D. & Colwell, C. W. Effective gait patterns for offloading the medial compartment of the knee. J. Orthop. Res. 27, 1016–1021 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brouwer, R. W., van Raaij, T. M., Verhaar, J. A. N., Coene, L. N. J. E. M. & Bierma-Zeinstra, S. M. A. Brace treatment for osteoarthritis of the knee: A prospective randomized multi-centre trial. Osteoarthr. Cartil. 14, 777–783 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Uchida, T. K. et al. Simulating ideal assistive devices to reduce the metabolic cost of running. PLoS ONE https://doi.org/10.1371/journal.pone.0163417 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dembia, C. L., Silder, A., Uchida, T. K., Hicks, J. L. & Delp, S. L. Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads. PLoS ONE https://doi.org/10.1371/journal.pone.0180320 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ong, C. F., Hicks, J. L. & Delp, S. L. Simulation-based design for wearable robotic systems: An optimization framework for enhancing a standing long jump. IEEE Trans. Biomed. Eng. 63, 894–903 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Cinque, M. E., Schickendantz, M. & Frangiamore, S. Review of anatomy of the medial ulnar collateral ligament complex of the elbow. Curr. Rev. Musculoskelet. Med. 13, 96 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Renström, P., Arms, S. W., Stanwyck, T. S., Johnson, R. J. & Pope, M. H. Strain within the anterior cruciate ligament during hamstring and quadriceps activity. Am. J. Sports Med. 14, 83–87 (1986).

    PubMed 
    Article 

    Google Scholar
     

  • Elias, J. J., Faust, A. F., Chu, Y. H., Chao, E. Y. & Cosgarea, A. J. The soleus muscle acts as an agonist for the anterior cruciate ligament: An in vitro experimental study. Am. J. Sports Med. 31, 241–246 (2003).

    PubMed 
    Article 

    Google Scholar
     

  • Brandon, S. C. E., Miller, R. H., Thelen, D. G. & Deluzio, K. J. Selective lateral muscle activation in moderate medial knee osteoarthritis subjects does not unload medial knee condyle. J. Biomech. 47, 1409–1415 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • Bennell, K. L. et al. Higher dynamic medial knee load predicts greater cartilage loss over 12 months in medial knee osteoarthritis. Ann. Rheum. Dis. 70, 1770–1774 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • Delp, S. L. et al. OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54, 1940–1950 (2007).

    PubMed 
    Article 

    Google Scholar
     

  • Seth, A. et al. OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1006223 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walker, P. S., Rovick, J. S. & Robertson, D. D. The effects of knee brace hinge design and placement on joint mechanics. J. Biomech. 21, 965–974 (1988).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Arnold, E. M., Ward, S. R., Lieber, R. L. & Delp, S. L. A model of the lower limb for analysis of human movement. Ann. Biomed. Eng. 38, 269–279 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • Silder, A., Whittington, B., Heiderscheit, B. & Thelen, D. G. Identification of passive elastic joint moment-angle relationships in the lower extremity. J. Biomech. 40, 2628–2635 (2007).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dostal, W. F., Soderberg, G. L. & Andrews, J. G. Actions of Hip Muscles. Phys. Ther. 66, 351–359 (1986).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Neumann, D. A. Kinesiology of the hip: A focus on muscular actions. J. Orthop. Sports Phys. Ther. 40, 82–94 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • Blemker, S. S. & Delp, S. L. Three-dimensional representation of complex muscle architectures and geometries. Ann. Biomed. Eng. 33, 661–673 (2005).

    PubMed 
    Article 

    Google Scholar
     

  • De Pieri, E. et al. Refining muscle geometry and wrapping in the TLEM 2 model for improved hip contact force prediction. PLoS ONE https://doi.org/10.1371/journal.pone.0204109 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sherman, M. A., Seth, A. & Delp, S. L. What is a moment arm? Calculating muscle effectiveness in biomechanical models using generalized coordinates. Proce. ASME Des. Eng. Tech. Conf. https://doi.org/10.1115/DETC2013-13633 (2013).

    Article 

    Google Scholar
     

  • Zajac, F. E. Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17, 359–411 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • Millard, M., Uchida, T., Seth, A. & Delp, S. L. Flexing computational muscle: Modeling and simulation of musculotendon dynamics. J. Biomech. Eng. 135, 021005 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • Arnold, E. M., Hamner, S. R., Seth, A., Millard, M. & Delp, S. L. How muscle fiber lengths and velocities affect muscle force generation as humans walk and run at different speeds. J. Exp. Biol. 216, 2150–2160 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lauber, B., Lichtwark, G. A. & Cresswell, A. G. Reciprocal activation of gastrocnemius and soleus motor units is associated with fascicle length change during knee flexion. Physiol. Rep. https://doi.org/10.14814/phy2.12044 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suydam, S. M., Manal, K. & Buchanan, T. S. The advantages of normalizing electromyography to ballistic rather than isometric or isokinetic tasks. J. Appl. Biomech. 33, 189–196 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Piazza, S. J., Erdemir, A., Okita, N. & Cavanagh, P. R. Assessment of the functional method of hip joint center location subject to reduced range of hip motion. J. Biomech. 37, 349–356 (2004).

    PubMed 
    Article 

    Google Scholar
     

  • Barrios, J. A., Crossley, K. M. & Davis, I. S. Gait retraining to reduce the knee adduction moment through real-time visual feedback of dynamic knee alignment. J. Biomech. 43, 2208–2213 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ipek. Normality test package. (2020).

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    MathSciNet 
    MATH 

    Google Scholar
     

  • R Core Team. A language and environment for statistical computing (2019).

  • Lakens, D. Equivalence tests: A practical primer for t tests, correlations, and meta-analyses. Soc. Psychol. Personal. Sci. 8, 355–362 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Source link

    Stay in Touch

    To follow the best weight loss journeys, success stories and inspirational interviews with the industry's top coaches and specialists. Start changing your life today!

    spot_img

    Related Articles